<u>Answer:</u> The average atomic mass of element bromine is 80.4104 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
- <u>For _{35}^{79}\textrm{Br}[/tex] isotope:</u>
Mass of
isotope = 78.9183 amu
Percentage abundance of
isotope = 50.69 %
Fractional abundance of
isotope = 0.5069
- <u>For
isotope:</u>
Mass of
isotope = 80.9163 amu
Percentage abundance of
isotope = 49.31 %
Fractional abundance of
isotope = 0.4931
Putting values in equation 1, we get:
![\text{Average atomic mass of Bromine}=[(78.9183\times 0.5069)+(80.9163\times 0.4931)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Bromine%7D%3D%5B%2878.9183%5Ctimes%200.5069%29%2B%2880.9163%5Ctimes%200.4931%29%5D)

Hence, the average atomic mass of element bromine is 80.4104 amu.
Answer:
Explanation:
Hello,
Among the options given on the attached document, since phenolic functional group is characterized by a benzene ring bonded with a hydroxyl group (C₆H₅OH) we can see that the first option correctly points out such description. Thus, answer is on the second attached picture. Other options are related with other sections found in eugenol that are not phenolic.
Best regards.
Answer: See below
Explanation:
1. To calculate the mass, you know you can convert by using molar mass. Since mass is in grams, we can use molar mass to convert moles to grams. This calls for the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We manipulate the equation so that we are solving for moles, then convert moles to grams.
n=PV/RT
P= 100 kPa
V= 0.831 L
R= 8.31 kPa*L/mol*K
T= 27°C+273= 300 K
Now that we have our values listed, we can plug in to find moles.


We use the molar mass of NO₂ to find grams.

The mass is 1.52 g.
2. To calculate the temperature, we need to use the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We can manipulate the equation so that we are solving for temperature.
T=PV/nR
P= 700.0 kPa
V= 33.2 L
R= 8.31 kPa*L/mol*K
n= 70 mol
Now that we have our values, we can plug in and solve for temperature.


The temperature is 40 K.
Mixing helps ensure that the measured pH is reflective of the entire solution