Answer:
C. A change has occurred in the nucleus.
Explanation:
Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
Gas "floats" so if there are examples or pictures it would be the one with the most evenly spread out "dots".
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
<span>1) Explain how the particles that make up solid matter can be in perpetual motion if they do not change position. Answer: they do not mov, just vibrate a bit more and move further apart. And as a result solid expand a bit.
</span><span>2) How the Kinetic Theory of Matter defines heat. Answer: Heat is a form of energy that particles convert into kinetic energy. Adding a heat energy increases the kinetic energy of particles. This means that as a substance is heated - the particles vibrate faster and move further apart. </span>