The zinc nail will rust and in vinigar it will evaporate
hi im zac
Answer:
1.) A simple harmonic oscillator has an amplitude of 3.50 cm and a maximum speed of 26.0 cm/s. What is its speed when the displacement is 1.75 cm? 2.) Both pendulum A and B are 3.0 m long. The period of A is T. Pendulum A is twice as heavy as pendulum B. What is the period of B? 3.) The time for one cycle of a periodic process is called the _ ? 4.) In simple harmonic motion, the acceleration is proportional to? 5.) The position of a mass that is oscillating on a spring is given by x= (18.3 cm) cos [(2.35 s-1)t]. What is the frequency of this motion?
Explanation:
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
When the frequency decreases the wavelength is further apart. When it increases its closer together. Think about a flat line when the frequency is low the wavelengths are wider. When its a high frequency the squiggly lines on the moniter are taller and thinner so the wavelengths are not as wide and not that far from each other depending on how high the frequency is.