Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
W / A = 39200 kg / m²
Explanation:
For this problem let's use the equilibrium equation of / newton
F = W
Where F is the force of the door and W the weight of water
W = mg
We use the concept of density
ρ = m / V
m = ρ V
The volume of the water column is
V = A h
We replace
W = ρ A h g
On the other side the cylinder cover has a pressure
P = F / A
F = P A
We match the two equations
P A = ρ A h g
P = ρ g h
P = 39200 Pa
The weight of the water column is
W = 1000 9.8 4 A
W / A = 39200 kg / m²
Answer:
<h2>15.25 N</h2>
Explanation:
A force of
is acting on a wagon along the road. The wagon weights
. Acceleration of the wagon is given as
.
Consider the block as the system, the forces acting are Frictional force, Gravitational force, Normal reaction and External force applied by us.
Gravitational Force and Normal Reaction cancel out each other.
Net External Force = Mass of system/wagon
Acceleration of wagon

has a negative sign because it opposes the motion of the wagon.
∴ Frictional Force = 15.25 N
<h3>
Answer:</h3>
189.07 kPa
<h3>
Explanation:</h3>
Concept tested: Boyle's law
<u>We are given;</u>
- Initial volume of the syringe, V1 is 16 cm³
- Initial pressure of the syringe, P1 is 1.03 atm
- New volume of the syringe, V2 is 8.83 cm³
We are required to calculate the new pressure of the syringe;
- We are going to use the concept on Boyle's law of gases.
- According to the Boyle's law, for a fixed mass of a gas, the pressure is inversely proportional to its volume at constant temperature.
- At varying pressure and volume, k(constant) = PV and P1V1=P2V2
Therefore, to get the new pressure, P2, we rearrange the formula;
P2 = P1V1 ÷ V2
= ( 16 cm³ × 1.03 atm) ÷ 8.83 cm³
= 1.866 atm.
- Thus, the new pressure is 1.866 atm
- But, we need to convert pressure to Kpa
- Conversion factor is 101.325 kPa/atm
Thus;
Pressure = 1.866 atm × 101.325 kPa/atm
= 189.07 kPa
Hence, the new pressure of the air in the syringe is 189.07 kPa