1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
3 years ago
6

What is the term for the overall change in position?

Physics
2 answers:
valentina_108 [34]3 years ago
8 0
Hi!

When we're looking at a basic overview of a change in position, this is known as <em>displacement. </em>Displacement is a vector quantity, compared to distance, which is a scalar quantity.

What this means is that displacement is focusing on magnitude <em>and </em>direction<em />, instead of just the magnitude. 

Hopefully, this helps! =)
mart [117]3 years ago
6 0
That's "displacement". It only depends on the beginning and ending locations, and doesn't care about the route between them.
You might be interested in
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
A 0.2-kg steel ball is dropped straight down onto a hard, horizontal floor and bounces straight up. The ball's speed just before
nadya68 [22]

Answer:

Explanation:

Given

mass of steel ball m=0.2\ kg

initial speed of ball u=10\ m/s

Final speed of ball v=-10\ m/s (in upward direction)

Impulse imparted is given by change in the momentum of object

therefore impulse J is given by

J=\Delta P

\Delta P=m(v-u)

\Delta P=0.2(-10-10)

\Delta =-4\ N-s

so magnitude of Impulse =4 N-s

7 0
3 years ago
Read 2 more answers
What is the final step in the fourth stage of technological design
Ierofanga [76]

Answer:

after a product has been improved and approved? reporting the results finding ways to lower costs selling a prototype determining criteria.

Explanation:

5 0
3 years ago
A 4 kg rock is dropped from 5 m. There is no friction. What kind of energy does is have before? What kind of energy does it have
denpristay [2]
1) The total mechanical energy of the rock is:
E=U+K
where U is the gravitational potential energy and K the kinetic energy.

Initially, the kinetic energy is zero (because the rock starts from rest, so its speed is zero), and the total mechanical energy of the rock is just gravitational potential energy. This is equal to
E_i=U=mgh
where m=4 kg is the mass, g=9.81 m/s^2 is the gravitational acceleration and h=5 m is the height.
Putting the numbers in, we find the potential energy
U=mgh=(4 kg)(9.81 m/s^2)(5 m)=196.2 J

2) Just before hitting the ground, the potential energy U is zero (because now h=0), and all the potential energy of the rock converted into kinetic energy, which is equal to:
E_f=K= \frac{1}{2}mv^2
where v is the speed of the rock just before hitting the ground. Since the mechanical energy of the rock must be conserved, then the kinetic energy K before hitting the ground must be equal to the initial potential energy U of the rock:
K=U=196.2 J

3) For the work-energy theorem, the work W done by the gravitational force on the rock is equal to the variation of kinetic energy of the rock, which is:
W=196.2 J-0 J=196.2 J
6 0
3 years ago
Calculate the induced electric field (in V/m) in a 40-turn coil with a diameter of 11 cm that is placed in a spatially uniform m
Naddik [55]

Answer:

Explanation:

Given that,

Number of turn N = 40

Diameter of the coil d= 11cm = 0.11m

Then, radius = d/2 = 0.11/2 =0.055m

r = 0.055m

Then, the area is given as

A =πr²

A = π × 0.055²

A = 9.503 × 10^-3 m²

Magnetic Field B = 0.35T

Magnetic field reduce to zero in 0.1s, t = 0.1s

so we want to find induce electric field. To find the electric field,(E) we need to find the electric potential (V).

E.M.F is given as

ε = —N • dΦ/dt

Where magnetic flux is given as

Φ = BA

Then, ε = —N • dΦ/dt

ε = —N • dBA/dt

ε = —NBA/t

Then, its magnitude is

ε = NBA/t

Inserting the values of N, B, A and t

ε = 40×0.35×9.503×10^-3/0.1

ε = 1.33 V

Then, using the relationship between Electric field and electric potential

V = Ed

ε = E•d

E = ε/d

E = 1.33/0.11

E = 12.09 V/m

7 0
3 years ago
Other questions:
  • The following diagram represents a cart with an initial velocity of 1.0 m/s sliding along a frictionless track from point A:
    9·2 answers
  • Why aren't descriptive investigations repeatable ?
    6·2 answers
  • An ostrich can run at a speed of 43 mi/hr. How much ground can an ostrich cover if it runs at this speed for 15 minutes? (Hint:
    8·1 answer
  • 6) K2O Use IUPAC nomenclature rules to properly identify this compound. A) potassium oxide B) dipotassium oxide C) potassium (I)
    10·1 answer
  • IPDE stands for ____________. A. Identify, Predict, Decide, and Execute B. Interpret, Predict, Divide, and Execute C. Identify,
    11·2 answers
  • Most geologists accept radiometric dating techniques as valid because
    10·2 answers
  • Please answer both questions and not just one. Thanks!
    8·1 answer
  • wich statement is true about the law of conservation of energy for an object released from a certain height above the ground​
    10·1 answer
  • A tennis ball "A" is released from rest down a 10.0 m long inclined ramp with a uniform acceleration of 5.0 m/s2 . Another tenni
    5·1 answer
  • Question 13 (1 point)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!