1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
3 years ago
12

When the third color band is silver it represents

Engineering
1 answer:
juin [17]3 years ago
4 0
The third band represents the multiplier
You might be interested in
What are the basic parts of a radio system
Romashka-Z-Leto [24]
Today's radio consists of an antenna, printed circuit board, resistors, capacitors, coils and transformers, transistors, integrated circuits, and a speaker. All of these parts are housed in a plastic case. An internal antenna consists of small-diameter insulated copper wire wound around a ferrite core.
4 0
3 years ago
A closed system of mass 10 kg undergoes a process during which there is energy transfer by work from the system of 0.147 kJ per
mr_godi [17]

Answer:

-50.005 KJ

Explanation:

Mass flow rate = 0.147 KJ per kg

mass= 10 kg

Δh= 50 m

Δv= 15 m/s

W= 10×0.147= 1.47 KJ

Δu= -5 kJ/kg

ΔKE + ΔPE+ ΔU= Q-W

0.5×m×(30^2- 15^2)+ mgΔh+mΔu= Q-W

Q= W+ 0.5×m×(30^2- 15^2) +mgΔh+mΔu

= 1.47 +0.5×1/100×(30^2- 15^2)-9.7×50/1000-50

= 1.47 +3.375-4.8450-50

Q=-50.005 KJ

7 0
3 years ago
Read 2 more answers
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
The electric motor exerts a torque of 800 N·m on the steel shaft ABCD when it is rotating at a constant speed. Design specificat
kodGreya [7K]

Answer:

d= 4.079m ≈ 4.1m

Explanation:

calculate the shaft diameter from the torque,    \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}

Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).

r = Radius of the shaft.

T = Twisting Moment or Torque.

J = Polar moment of inertia.

C = Modulus of rigidity for the shaft material.

l = Length of the shaft.

θ = Angle of twist in radians on a length.  

Maximum Torque, ζ= τ ×  \frac{ π}{16} × d³

τ= 60 MPa

ζ= 800 N·m

800 = 60 ×  \frac{ π}{16} × d³

800= 11.78 ×  d³

d³= 800 ÷ 11.78

d³= 67.9

d= \sqrt[3]{} 67.9

d= 4.079m ≈ 4.1m

3 0
3 years ago
Read 2 more answers
HAPPINESS DISCUSSION
RideAnS [48]

Answer:

uh because life sucks o_<

8 0
2 years ago
Read 2 more answers
Other questions:
  • Technician A says that when using an impact wrench to remove a bolt from the front of an engine's crankshaft, the crankshaft mus
    15·1 answer
  • At a 4 percent annual growth rate in GDP per capita, it will take
    15·1 answer
  • if a voltage is applied to a capacitor, current flows easily at first and then slows as the capacitor becomes charged. Inductors
    5·1 answer
  • A tank has two rooms separated by a membrane. Room A has 1 kg of air and a volume of 0.5 m3; room B has 0.75 m3 of air with dens
    15·1 answer
  • 4.7 If the maximum tensile force in any of the truss members must be limited to 22 kN, and the maximum compressive force must be
    9·1 answer
  • E) What are the major jobs of a nurse?<br><br>​
    14·1 answer
  • An agricultural manager requires
    12·1 answer
  • : A drive system using the electric motor is under load as 75Nm with an angular velocity of 100rad/s, then the electric motor is
    11·1 answer
  • ​please how to drawing mechanical drawing after connecting the all parts thanks
    6·1 answer
  • The primary of an ideal transformer has 400 turns and its secondary has 200 turns. Neglecting electrical losses, if the power in
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!