1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bogdanovich [222]
3 years ago
13

A 200 W vacuum cleaner is powered by an electric motor whose efficiency is 70%. (Note that the electric motor delivers 200 W of

net mechanical power to the fan of the cleaner). Calculate the rate at which this vacuum cleaner supply energy to the room when running. ?
Engineering
1 answer:
Goshia [24]3 years ago
5 0

Answer:

The rate at which this vacuum cleaner supply energy to the room when running is 285.71 Watts.

Explanation:

power efficiency of electric motor = 70% = 0.70

The power output of the vacuum cleaner =P_o= 200 W

The power output of the vacuum cleaner = P_i

Efficiency=\frac{P_o}{P_i}

0.70=\frac{200 W}{P_i}

P_i=\frac{200 W}{0.70}=285.71 W

The rate at which this vacuum cleaner supply energy to the room when running is 285.71 Watts.

You might be interested in
Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at
sergeinik [125]

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

6 0
3 years ago
The time to failure for a gasket follows the Weibull distribution with ß = 2.0 and a characteristic life of 300 days. What is th
Aleks04 [339]

Answer:

64.11% for 200 days.

t=67.74 days for R=95%.

t=97.2 days for R=90%.

Explanation:

Given that

β=2

Characteristics life(scale parameter α)=300 days

We know that Reliability function for Weibull distribution is given as follows

R(t)=e^{-\left(\dfrac{t}{\alpha}\right)^\beta}

Given that t= 200 days

R(200)=e^{-\left(\dfrac{200}{300}\right)^2}

R(200)=0.6411

So the reliability at 200 days 64.11%.

When R=95 %

0.95=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=67.74 days

When R=90 %

0.90=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=97.2 days

7 0
3 years ago
NAME JUICE WRLDS SONG THAT HE BLEW UP ON
creativ13 [48]

Answer:

lucid dreams :)

Explanation:

5 0
3 years ago
Read 2 more answers
Test de evaluare
ivolga24 [154]
C why it’s c bc they I just got it right
7 0
2 years ago
How are the particles moving and and arranged in a liquid?
Ipatiy [6.2K]

Answer:

The particles in a liquid have small spaces between them, but not as small as solids. The particles in a liquid are loosely arranged which means they do not have a fixed shape like solids, but they rather take the shape of the container they are in.

6 0
3 years ago
Other questions:
  • Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 5 1208C, p1 5
    15·1 answer
  • A sludge pump pumps at a rate of 40 GPM. The raw sludge density is 4.5 percent solids. How many minutes per hour should the pump
    11·1 answer
  • Quantitative meaning
    5·2 answers
  • A flow of 12 m/s passes through a 6 m wide, 2 m deep rectangular channel with a bed slope of 0. 001. If the mean velocity of flo
    12·1 answer
  • Which reference source may be consulted to answer questions regarding the Professional Engineers Act?
    10·1 answer
  • 30POINTS
    15·2 answers
  • Who has good grades in school like A's B's dm me
    11·2 answers
  • 1<br>M<br>A BLIND COOK WHO DEFEATED<br>OVER 30,000 HOME COOKS!<br>y of​
    13·1 answer
  • QUICK ASAP!!!
    6·1 answer
  • Relay contacts that are defined as being normally open (n.o.) have contacts that are:_____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!