1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
14

You’re driving down the highway late one night at 20 m/s when a deer steps onto the road 35 m in front of you. Your reaction t

ime before stepping on the brakes is 0.50 s, and the maximum deceleration of your car is 10 m/s2.
a. How much distance is between you and the deer when you come to a stop?

b. What is the maximum speed you could have and still not hit the deer?
Physics
1 answer:
Bess [88]3 years ago
3 0

Answer:

(a) Distance between deer and car = 5 m

(b) Vmax = 21.92 m/s

Explanation:

a.

First we calculate distance covered during response time:

s₁ = vt   --------- equation 1

where,

s₁ = distance covered during response time = ?

v = speed of car = 20 m/s

t = response time = 0.5 s

Therefore,

s₁ = (20 m/s)(0.5 s)

s₁ = 10 m

Now, we calculate the distance covered by the car during deceleration. Using 3rd equation of motion:

2as₂ = Vf² - Vi²

s₂ = (Vf² - Vi²)/2a ------ eqation 2

where,

a = deceleration = - 10 m/s²

s₂ = Distance covered during deceleration = ?

Vf = Final Velocity = 0 m/s (since car finally stops)

Vi = Initial Velocity = 20 m/s

Therefore,

s₂ = [(0 m/s)² - (20 m/s)²]/2(-10 m/s²)

s₂ = (400 m²/s²)/(20 m/s²)

s₂ = 20 m

thus, the total distance covered by the car before coming to rest is given as:

s = s₁ + s₂

s = 10 m + 20 m

s = 30 m

Now, the distance between deer and car, when it comes to rest, can be calculated as:

Distance between deer and car = 35 m - s = 35 m - 30 m

<u>Distance between deer and car = 5 m</u>

b.

Since, the distance covered by the car in total must be equal to 35 m at maximum. Therefore,

s₁ + s₂ = 35 m

using equation 1 and equation 2 from previous part:

Vi t + (Vf² - Vi²)/2a = 35 m

Vi(0.5 s) + [(0 m/s)² - Vi²]/2(-10 m/s²) = 35 m

0.5 Vi + 0.05 Vi² = 35

0.05 Vi² + 0.5 Vi - 35 = 0

solving this quadratic equation, we get:

Vi = - 31.92 m/s  (OR)  Vi = 21.92 m/s

For maximum velocity:

<u>Vmax = 21.92 m/s</u>

You might be interested in
An 8.0 cm object is 40.0 cm from a concave mirror that has a focal length of 10.0 cm. Its image is 16.0 cm in front of the mirro
svet-max [94.6K]
 We can rearrange the mirror equation before plugging our values in. 
1/p = 1/f - 1/q. 
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p  <-- cross multiplication
13.33cm = p

Now that we have the value of p, we can plug it into the magnification equation.

M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'

So the height of the image produced by the mirror is 9.6cm.
6 0
3 years ago
HELP QUICK PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
KIM [24]

Answer:

the answer is c

Explanation:

6 0
4 years ago
Read 2 more answers
Mrs. Perez added a room temperature copper cube and an aluminum cube she just removed from the freezer to a beaker of boiling wa
faust18 [17]
I think the answer is A
5 0
3 years ago
To demonstrate the tremendous acceleration of a top fuel dragracer, you attempt to run your car into the back of a dragster that
noname [10]

Answer:

a. 2v₀/a   b. 2v₀/a  

Explanation:

a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.

Since the dragster starts from rest with an acceleration, a, using

s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster

s' = 0t + 1/2at²

s' = 1/2at²

Since the distance moved by me and the dragster must be the same,

s = s'

v₀t. =  1/2at²

v₀t. - 1/2at² = 0

t(v₀ - 1/2at) = 0

t= 0 or v₀ - 1/2at = 0

t= 0 or v₀ = 1/2at

t= 0 or t = 2v₀/a  

So the maximum time tmax = 2v₀/a

b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s =  v₀(2v₀/a)

= 2v₀/a  

4 0
3 years ago
The distance of Saturn from the sun is:<br><br> &lt; 1 A.U.<br> &gt; 1 A.U.<br> = 1 A.U.
sertanlavr [38]

Answer:

1 astronomical unit is the average distance from the Earth to the Sun; approximately 150 million km. At its closest point, Saturn is 9 AU, and then at its most distant point, it's 10.1 AU. Saturn's average distance from the Sun is 9.6 AU. We have written many articles about Saturn for Universe Today.

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the current when a typical static charge of 0.234~\mu\text{c}0.234 μc moves from your finger to a metal doorknob in 0.59
    13·1 answer
  • What does ice, liquid water and water vapor all <br> have in common?
    11·2 answers
  • A football is kicked into the air from an initial height of 4 feet. The height, in feet, of the football above the ground is giv
    8·2 answers
  • Question is In Image Provided
    13·1 answer
  • Water evaporates off lakes. Winds blow across the planet. Where does the energy come from for these and other weather processes?
    14·2 answers
  • A car moving with a velocity 15m/s and accelerating by 5m/s² attempts to reach a car moving with 30 m/s velocity.What distance s
    14·1 answer
  • What are the two main factors that<br>affect how quickly a coastline erodes?​
    8·1 answer
  • Four equal masses m are located at the corners of a square of side L, connected by essentially massless rods. Find the rotationa
    13·1 answer
  • What part of the diagram is labeled by the number 3?
    7·1 answer
  • The loudness of a sound is the wave's _______
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!