A) C2H6O1
To find the emperical formula, divide each mole value by the smallest
For carbon, 0.013/0.0065 = 2
For hydrogen, 0.038/0.0065= 6
For oxygen, 0.0065/0.0065= 1
Emperical formula = C2H6O1
Explanation:
2H2(g) + O2(g) → 2H2O(l )
Answer:
A ground wire helps those positive charges get to the ground in a safe, direct and controlled way, where they can be discharged without the risk of electrical shock or fire. Shock Absorber Excess electrical charges are common in any home.
Explanation:
:3
- E(Bonds broken) = 1371 kJ/mol reaction
- E(Bonds formed) = 1852 kJ/mol reaction
- ΔH = -481 kJ/mol.
- The reaction is exothermic.
<h3>Explanation</h3>
2 H-H + O=O → 2 H-O-H
There are two moles of H-H bonds and one mole of O=O bonds in one mole of reactants. All of them will break in the reaction. That will absorb
- E(Bonds broken) = 2 × 436 + 499 = 1371 kJ/mol reaction.
- ΔH(Breaking bonds) = +1371 kJ/mol
Each mole of the reaction will form two moles of water molecules. Each mole of H₂O molecules have two moles O-H bonds. Two moles of the molecule will have four moles of O-H bonds. Forming all those bond will release
- E(Bonds formed) = 2 × 2 × 463 = 1852 kJ/mol reaction.
- ΔH(Forming bonds) = - 1852 kJ/mol
Heat of the reaction:
is negative. As a result, the reaction is exothermic.
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g