Surface area and Mass
When a leaf falls, it is being accelerated by gravity to the ground but opposed by air resistance also the drag. The net force on a leaf will therefore be calculated by subtracting its weight of the leaf from its drag.
<h3>What is Air resistance ?</h3>
Air exerts a force known as air resistance. When an object is travelling through the air, the force works in the opposite direction.
- While a sports vehicle with a streamlined design will encounter reduced air resistance and experience less drag, the automobile will be able to move more quickly than a truck with a flat front.
- The speed, area, and shape of the object passing through the air all affect air resistance. Air density and resistance are affected by altitude, temperature, and humidity. The resistance increases with speed and area, respectively.
Learn more about Air resistance here:
brainly.com/question/27965545
#SPJ4
Aswer:
False, the values of the distance traveled and the displacement only coincide when the trayectorie is a straight line. Otherwise, the distance will always be greater than the offset.
Although these terms are used synonymously in other cases, they are totally different. Since the distance that a mobile travels is the equivalent of the length of its trajectory. Whereas, the displacement will be a vector magnitude.
<u>xXCherryCakeXx</u>.
Report this clown who put the first answer he’s trying to get your ip
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Q = m * c * ΔΤ
ΔΤ = 40-20 = 20
Q = 1.5kg * 0.9 * 20
Q = 27J