Continue on the momentum it has. The probe will continue in the same direction it is moving because there are no forces to act against it. I think this is the answer you are looking for...?
Answer:
It corresponds to a distance of 100 parsecs away from Earth.
Explanation:
The angle due to the change in position of a nearby object against the background stars it is known as parallax.
It is defined in a analytic way as it follows:
Where d is the distance to the star.
(1)
Equation (1) can be rewritten in terms of d:
(2)
Equation (2) represents the distance in a unit known as parsec (pc).
The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).
For the case of ():
Hence, it corresponds to a distance of 100 parsecs away from Earth.
<em>Summary:</em>
Notice how a small parallax angle means that the object is farther away.
Key terms:
Parsec: Parallax of arc second
Answer:1.04 N
Explanation:
Given
Gravitational Force on the Platter is
Tray makes an angle of
This gravitational Force has components along and Perpendicular to Platter
Perpendicular Force
Along the Tray
Thus 1.04 N is the magnitude of force that will cause Platter to slide down
Answer:
The correct answer is B.
Explanation:
Step 1:
The available regression equation is: Predict height= 0.29 + 0.48 (age).
Here, the predict height is dependent variable and the age is in-dependent variable.
Intercept = 0.29
Slope = 0.48
The given regression equation indicates the y on x model and the intercept coefficients of the regression equation is 0.29 and the slope is 0.48.
Step 2:
The height increases, an average, by 0.48 m per year.
Because co-efficient of slope variable indicate the positive sign and we increase 1 year in age then automatically height increased is 0.48 m.
<h3>
</h3><h3>
The height increases, on average, by 0.48 meter each year.</h3>
Answer:
During <u>winter (late December/early January)</u> the Earth is closest to the Sun and during <u>summer (late June/early July)</u> the Earth is farthest from the Sun.
Explanation:
In the northern hemisphere, the earth usually comes closer to the sun during the time of winter season, mostly in late December or early January.
On the other hand, the earth is farthest from the sun during the time of summer season, mostly in late June or early July.
When the earth is closer to the sun, during the winter, it is comparatively cold. It is due to the absorption of a lesser amount of incoming solar radiation. The tilt of the earth is also responsible for this low temperature.
But, when the earth is farthest from the sun, during the summer, it is comparatively hot. It is due to the absorption of a large amount of incoming solar radiation.