Answer:
C. Sunlight to electricity
Explanation:
Photo voltaic cells covert sunlight to the electricity. It absorbs the light from the sun and use that sunlight to create electric current. The number of photo voltaic cells are connected together in a solar panel to generate enough electricity to power up a home.
Answer:
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)
Answer:c
Explanation:
Given
object is falling Freely with an odometer
Suppose it falls with zero initial velocity
so distance fallen in time t is given by

here u=0 and t=time taken

for 

for 

distance traveled in 2 nd sec
for 

distance traveled in 3 rd sec
so we can see that distance traveled in each successive second is increasing
1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
Answer:
While the bus is moving, luggage tends to remain in inertia of motion state. When the bus stops, the luggage tends to resist the change and due to inertia of motion it moves forward and may fall off. That's why it is advised to tie any luggage kept on the roof of a bus with a rope.