Answer:
Use the form of equation:
Q=mL
You have the specific latent heat of vaporization L = 2.260*10^{6}
And Q, the heat energy supplied, which equals 1695 KJ = 1695*10^{3} J
So you can get the mass by substitution in the formula below.
Answer:
Explanation:
Impulse of reaction force of floor = change in momentum
Velocity of impact = √ 2gh₁
= √ 2 x 9.8 x 1.5 = 5.4 m /s.
velocity of rebound = √2gh₂
= √ 2x 9.8 x 1
= 4.427 m / s.
Initial momentum = .050 x 5.4 = .27 kg m/s
Final momentum = .05 x 4.427 = .22 kg.m/s
change in momentum = .27 - .22 = .05 kg m/s
Impulse = .05 kg m /s
Impulse = force x time
force = impulse / time
.05 / .015 = 3.33 N.
kinetic energy = 1/2 m v²
Initial kinetic energy = 1/2 x .05 x 5.4²
= 0.729 J
Final Kinetic Energy =1/2 x .05 x 4.427²
= 0.489 J
Change in Kinetic energy =0 .24 J
Lost kinetic energy is due to conversion of energy into sound light etc.
When balanced forces follow up on an object, the object won't move. If you push against a wall, the wall pushes back with an equal but opposite force. Neither you nor the wall will move. Forces that cause a change in the motion of an object are unbalanced forces.
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.