Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
Answer:
mass.
Explanation:
other physical factors are changeable but the mass of a particular substance is always constant.
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>