The electronic transition that will produce the lowest frequency is an electron falling from the 3rd to the 2nd energy level.
The question is incomplete, the complete question is;
As electrons fall from high energy orbitals to lower orbitals, energy is released in the form of electromagnetic radiation. The farther the electron falls, the more energy is released. Which of the following electronic transitions would produce a wave with the lowest frequency?
an electron falling from the 6th to the 2nd energy level
an electron falling from the 5th to the 2nd energy level
an electron falling from the 3rd to the 2nd energy level
an electron jumping from the 1st to the 2nd energy level
According to Bohr's theory, energy is absorbed or emitted when an electron moves from one energy level to another. This energy often occurs as visible light of known frequency and wavelength.
The magnitude of frequency of light depends on the difference in energy between the two energy levels. If the difference between the energy levels is high, the frequency of light is also high and vice versa.
The transition from 3rd to the 2nd energy level represents a low frequency transition because the energy levels are close together.
Learn more: brainly.com/question/10675485
Answer:
A,C,D,B
Explanation:
1killometer=1000m
1mm=0.001m
1cm=0.01m
base unit of length is meter
So here we are given that the the velocity of the proton ( V ) is 2.0 ×
meters / second, with a magnetic field of strength 5.5 ×
tesla. If they each form a right angle, they are hence perpendicular to one another, such that ....
F = q( V × B ),
F = q v B( sin ∅ ),
F = q v B( sin( 90 ) )
.... they form the following formula. Let's go through each of the variables in our formula here -
{ F = Magnetic Force ( which has to be calculated ), q = charge of proton (has charge of 1.602 ×
coulombs ), B = magnetic field }
All we have to do now is plug and chug,
F = ( 1.602 ×
)( 2.0 ×
)( 5.5 ×
) = ( About ) 1.8 ×
Newtons
Answer:
We have NH 4 and that's called the ammonium ion it also stays together.
Explanation:
Answer: The equilibrium concentration of hydrogen gas is 0.0269 M
Explanation:
The chemical reaction follows the equation:

At t = 0 0.044M 0.044M 0.177M
At
(0.044-x)M (0.044-x)M (0.177+x)M
The expression for
for the given reaction follows:
![K_c=\frac{[HI]^2}{[H_2]\times [I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D)
We are given:

Putting values in above equation, we get:


Hence, the equilibrium concentration of hydrogen gas is (0.044-x) M =(0.044-0.0171) M= 0.0269 M