Answer:
488.6KN
Explanation:
Hello!
the first step to solve this problem we must find the pressure exerted at the bottom of the tank (P) which is the sum of the external air pressure (P1 = 92kPa), the pressure inside the tank (P2 = 100kPa) and the pressure due to the weight of the water (P3), taking into account the above we have the following equation
P=P1+P2+P3
to find the pressure at the bottom of the tank due to the weight of the water we use the following equation

where
α=density=1 g/cm^3=1000kg/M^3
H=height=14.1m
g=gravity=3.71m/s^2
solving
P3=(1000)(14.1)(3.71)=52311Pa=52.3kPa
P=P1+P2+P3
P=100kPa+92kPa+52.3kPa=244.3kPa
finally to solve the problem we remember that the pressure is the force exerted on the area

Answer:
so the answer is The height of spring minus from the length of metre rule =25
<span>Since youc oncetrate all your force directly towards the moment arm it means that you push it at an angle of your force is directed to the left or the right and I bet that it must be 90</span> degrees to the bar. Obviuosly, if you are about to push it you will do it straight up but not in a zig zag way. In other words, it should be perpendicular to the arm because the<span> torque can be produced only if force is applied at a constant index (90).
Hope that helps! Regards.</span>
Answer:
A derived quantities is terms of the 7 base quantities via a system of quantity equations which are called SI derived units.
Explanation: there you go:)