The force acting on the object is constant, so the acceleration of the object is also constant. By definition of average acceleration, this acceleration was
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (6 m/s - 0) / (1.7 s) ≈ 3.52941 m/s²
By Newton's second law, the magnitude of the force <em>F</em> is proportional to the acceleration <em>a</em> according to
<em>F</em> = <em>m a</em>
where <em>m</em> is the object's mass. Solving for <em>m</em> gives
<em>m</em> = <em>F</em> / <em>a</em> = (10 N) / (3.52941 m/s²) ≈ 2.8 kg
Answer:
The pressure difference will increase by the factor of 1.75
Explanation:
For constant flow rate, coefficient of viscosity, length of the vessel and the pressure difference is inversely proportional to the fourth power of the radius of the blood vessel
Apply the principle of Poiseuille’s law.
Q = (P2 - P1)/R
Pls check the attached file for step by step solution of the question. It is submitted in this way as typing the equation may not be explanatory.
The work done when a spring is stretched from 0 to 40cm is 4J.
What is work done?
Work done is the magnitude of force multiplied by displacement of an object. It is also the amount of energy transferred to an object when work is done on that.
The work done on the spring to stretch to 40cm is,
F = kx
where F is force, k is force constant.
k = F / x = 10 N / 20 * 10^-2 m = 50 N/m
W = 0.5 * k * (x)^2
where W = work done, k = force constant.
W = 0.5 x 50 x (40 x 10^-2)^2 = 4 J.
Therefore, the work done on the spring when it is stretched to 40cm is 4J.
To learn more about work done click on the given link brainly.com/question/25573309
#SPJ4