1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
2 years ago
10

What is the horsepower of a 1,500 kg car that can go to the top of a 360 m high hill in exactly 1 min?

Physics
1 answer:
Airida [17]2 years ago
7 0

Answer:

W = m g h        work that must be done on car

P = W / t       power that must be input (in Watts)

P = m g h / t = 1500 kg * 9.8 m/s^2 * 360 m /  60 sec

P = 88,200 watts

P = 88,200 watts / 746 watts / hp = 118 hp

You might be interested in
Wich of the following celestial bodies is most likely to have many craters
Ede4ka [16]
Where are the following awnsers?
6 0
3 years ago
Electrically charged particles are found primarily in
lesantik [10]

Answer:

the ionosphere

.......................................................

8 0
3 years ago
A car travels 40 miles in 30 minutes.
lukranit [14]

Answer:

(a)Average velocity ,v =128.74 Km/hr

(b)Kinetic Energy , K=958546.875 Joule

(c)Distance, s=268.8m

(d)Acceleration, a= - 2.38 m/s^2

<u>Explanation</u>:

<u>Given</u>:

Distance travelled = 40 miles

Time taken = 30 minutes.

(A) The average velocity in kilometres/hour

Converting 40 miles into km ,

we know that,

1 mile = 1.60934

40 miles =  40 x 1.60934

so 40 miles  =  64.3738 Km

similarly converting 30 minutes into hours

1 minute = \frac{1}{60}hours

30 minute = \frac{30}{60}hours

30 minute = \frac{1}{2}hours

Now

Average velocity = \frac{Speed}{time}

Substituting Values,

Average velocity = \frac{64.3738}{\frac[1}{2}}

Average velocity = 64.3738 \times 2

Average velocity =128.74 Km/hr

(B) If the car weighs 1.5 tons, what is its If the car weighs 1.5 tons, what is its kinetic energy in joules (Note: you will need to convert your velocity to m/s)? in joules (Note: you will need to convert your velocity to m/s)?

Converting 1.5 tons into kg we get

1 ton = 1000 kg

so 1.5 ton =1500 kg

converting  velocity to m/s

128.74  \times \frac{5}{18}

=>35.75 m/s----------------------------------------------------------(1)

kinetic energy  K= \frac{1}{2}mv^2

Substituting the values,

K= \frac{1}{2}1500(35.75)^2

K= \frac{1}{2}1500(1278.06)

K= \frac{1500 \times (1278.06)}{2}

K= \frac{1917093.75}{2}

K=958546.875 Joule---------------------------------------------(2)

(c)When the driver applies the brake, it takes 15 seconds to stop. How far does the car travel (in meters) while stopping

Lets use Distance formula,

S= ut+\frac{1}{2}at^2

Substituting the known values,

s= ut+\frac{1}{2}at^2

s= (37.75)(15)+\frac{1}{2}a(15)^2

s=566.25+\frac{1}{2}a(225)

s=566.25+\frac{(225a)}{2}-------------------------------------(3)

(D) What is the average acceleration of the car (in m/s2) during braking?

Using the formula

v=u +at

re arranging the formula we get,

a = \frac{v - u}{t}

Substituting the values

a = \frac{0 - 35.75}{15}

a = \frac{- 35.75}{15}

a= - 2.38 m/s^2----------------------------------------(4)

Now substituting 4 in 3 we get

s=566.25+\frac{(225( - 2.38)}{2}

s=566.25+\frac{-535.5}{2}

s=536.25-267.75

s=268.8m--------------------------------------------------------------(5)

4 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
A tiger leaps horizontally out of a tree that is 6.00 m high. If he lands 2.00 m from the base of the tree, calculate his initia
Musya8 [376]

Answer:

The initial speed of the tiger is 1.80 m/s

Explanation:

Hi there!

The equation of the position vector of the tiger is the following:

r = (x0 + v0 · t, y0 + 1/2 · g · t²)

Where:

r = position vector at a time t.

x0 = initial horizontal position.

v0 = initial horizontal velocity.

t = time.

y0 = initial vertical position,

g = acceleration due to gravity.

Let´s place the origin of the frame of reference on the ground at the point where the tree is located so that the initial position vector will be:

r0 = (0.00, 6.00) m

We can use the equation of the vertical component of the position vector to obtain the time it takes the tiger to reach the ground.

y = y0 + 1/2 · g · t²

When the tiger reaches the ground, y = 0:

0 = 6.00 m - 1/2 · 9.81 m/s² · t²

2 · (-6.00 m) / -9.81 m/s² = t²

t = 1.11 s

We know that in 1.11 s the tiger travels 2.00 m in the horizontal direction. Then, using the equation of the horizontal component of the position vector we can find the initial speed:

x = x0 + v0 · t

At t = 1.11 s, x = 2.00 m

x0 = 0

2.00 m = v0 · 1.11 s

2.00 m / 1.11 s = v0

v0 = 1.80 m/s

The initial speed of the tiger is 1.80 m/s

4 0
3 years ago
Other questions:
  • What does the slope of a distance-versus time graph show you about the motion of an object
    14·1 answer
  • Phase change occurs in which of the following A. A suspension. B boiling point. C An explosion D Mixing Point
    13·2 answers
  • Name three things that you can do to protect yourself family and pets from a severe weather event
    12·2 answers
  • A deep-space vehicle moves away from the Earth with a speed of 0.870c. An astronaut on the vehicle measures a time interval of 3
    11·1 answer
  • An electron remains suspended between the surface of the Earth (assumed neutral) and a fixed positive point charge, at a distanc
    12·1 answer
  • What discovery lead J.J. Thomson to decide that atoms were not indivisible, but are actually composed of smaller parts? Thomson
    12·2 answers
  • Convertir:<br> A. 3Km a m<br> B. 250 ma Km<br> C. 1000Cm a m<br> D. 10000 mm a Cm
    6·1 answer
  • Help asap plse its a product ples help asap
    9·1 answer
  • At the surface of a certain planet, the gravitational acceleration g has a magnitude of 20.0 m/s^2. A 22.0-kg brass ball is tran
    10·1 answer
  • A block starting from rest slides down the length of an 18 plank with an acceleration of 4.0 meters per second. How long does th
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!