I think the answer is a but I am not for sure
Answer:
MgCl₂+ Na₂CO₃ ==> MgCO₃ + NaCl
From a quick observation
You see that the right hand side of the eqn is deficient of Sodium and Chlorine
Simply Add a Coefficient of 2 to NaCl to balance it with the left.
Your answer now becomes
MgCl₂ + Na₂CO₃ ==> MgCO₃ + 2NaCl.✅
1) is chemical Bonds
3) Conservation of mass
5) compound
hope i helped on the ones i could answer
Answer: The correct answer is "B" two bonding domains(or bonding pairs) or two non bonding domains(or lone pairs)
Explanation:
Molecular geometry/structure is a three dimensional shape of a molecule. It is basically an arrangement of atoms in a molecule.It is determined by the central atom, its surrounding atoms and electron pairs.According to VSEPR theory, there are 5 basic shapes of a molecule: linear, trigonal planar, tetrahedral, trigonal bipyramidal and octahedral.
A)Four bonding domains and zero non bonding domains: shape is tetrahedral and bond angle is 109.5°
B)Two bonding domains and two non bonding domains(lone pairs): shape is bent and bond angle is 104.5°
C)Three bonding domains and one non bonding domain: shape is trigonal pyramidal and bond angle is 107°
D)Two bonding domain and zero non bonding domain: shape is linear and bond angle is 107°
E)Two bonding domain and one non bonding domain: bent shape and bond angle is 120°
F)Three bonding domains and zero nonbonding domain: shape is trigonal planar and bond angle is 120°
Hence Two bonding domains and two non bonding domains have the smallest bond angle.
Answer:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
E decreseas 3/2 as fast as G increases = 0.30 M/s
Explanation:
Rate of reaction = -d[D] / 2dt = -d[E]/ 3dt = -d[F]/dt = d[G]/2dt = d[H]/dt
When the concentration of D is decreasing by 0.10 M/s, how fast is the concentration of H increasing:
Given data = d[D]/dt = 0.10 M/s
-d[D] / 2dt = d[H]/dt
d[H]/dt = 0.05 M/s
The concentration of H is increasing, half as fast as D decreases: 0.05 mol L–1.s–1
When the concentration of G is increasing by 0.20 M/s, how fast is the concentration of E decreasing:
d[G] / 2dt = -d[H]/3dt
E decreseas 3/2 as fast as G increases = 0.30 M/s