The question is incomplete, here is the complete question:
At elevated temperature, nitrogen dioxide decomposes to nitrogen oxide and oxygen gas

The reaction is second order for
with a rate constant of
at 300°C. If the initial [NO₂] is 0.260 M, it will take ________ s for the concentration to drop to 0.150 M
a) 1.01 b) 5.19 c) 0.299 d) 0.0880 e) 3.34
<u>Answer:</u> The time taken is 5.19 seconds
<u>Explanation:</u>
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.150 M
= Initial concentration = 0.260 M
Putting values in above equation, we get:

Hence, the time taken is 5.19 seconds
Answer:
The percentage deviation is
%
Explanation:
From the question we are told that
The concentration is of the solution is 
The true absorbance A = 0.7526
The percentage of transmittance due to stray light
% 
Generally Absorbance is mathematically represented as

Where T is the percentage of true transmittance
Substituting value



%
The Apparent absorbance is mathematically represented

Substituting values


= 0.7385
The percentage by which apparent absorbance deviates from known absorbance is mathematically evaluated as


%
Since Absorbance varies directly with concentration the percentage deviation of the apparent concentration from know concentration is
%
C. mass is protons and neutrons. Both are in the nucleus
Answer:
Hot fluids are formed mainly of water and dissolved minerals. They can seep through rocks and chemically react with the minerals in the rocks potentially changing the composition of the rock. Metamorphic rocks can form from other metamorphic rocks.