There will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.There will be needed mL of
Why?
In order to calculate how many milliliters are needed to obtain 16.1 grams of the salt given its concentration, we first need to find its chemical formula which is the following:

Now that we know the chemical formula of the substance, we need to find its molecular mass. We can do it by the following way:

We have that the molecular mass of the substance will be:

Therefore, knowing the molecular mass of the substance, we need to calculate how many mols represents 16.1 grams of the same substance, we can do it by the following way:


Finally, if we need to calculate how many milliliters are needed, we need to use the following formula:


Now, substituting and calculating, we have:

Henc, there will be needed 982.35 mL of solution to obtain 16.1 grams of the salt.
Have a nice day!
Answer:
your answer is (a) Copper Metal
Explanation:
It wouldn’t be hydrogen bonding because hydrogen bonding takes place with highly electronegative elements like N,O & F being the most electronegative. It’s not ion - dipole because there is no ion present. So I’m sure it is dispersion
Hello!
The hybridization of the C atom in CH₂Br₂ is sp3
When bonding, the orbitals "s" and "p" from C atoms interact to form hybridized orbitals. If the C atom has 4 sigma bonds, as is the case in CH₂Br₂, there are 4 hybridized orbitals required, so 1 "s" orbital and 3 "p" orbitals hybridize to form an sp3 hybrid orbital. This orbital has tetrahedral geometry and the bond angle is 109,5 °.
Have a nice day!
Answer:
-1, -4
Explanation:

Factoring, you get:

To find what x can be, you need to realize what could make this equation true. To set the left side equal to 0, either one of the terms in parentheses must be equal to 0. To do that, x must be the negative of the other term, so that they can cancel each other out. Therefore, x is -4 and -1. Hope this helps!