Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
The motorist travels (a) 58 km/h and (b) ~16.1 m/sec
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>
Option B is the correct answer.
MKS system gives the following units:
Distance ----- meters
Mass ----- Kilograms
Time ----- seconds
meter is basic unit for length measurement. smaller units are centimeter, millimeter, micrometer, bigger units are kilometer and so on.
kilogram is the basic unit for mass. smaller unit is gram.
second is the basic unit for time. Greater units are minutes, hours, smallest unit are micro second and so on.
Answer:
4.02 s
Explanation:
From the question given above, the following data were obtained:
Angle of projection (θ) = 35°
Initial velocity (u) = 50 m/s
Acceleration due to gravity (g) = 10 m/s²
Time of flight (T) =?
The time of flight of the arrow can be obtained as follow:
T = 2uSineθ / g
T = 2 × 35 × Sine 35 / 10
T = 70 × 0.5736 / 10
T = 7 × 0.5736
T = 4.02 s
Therefore, the time taken for the arrow to return is 4.02 s