Answer: [N2]₀ = 10M and [H2]₀ = 11M
Explanation: To calculate the initial concentration, you would have to set up an ICE table, which is an organized way of tracking known quantities or the ones you want to find. ICE stands for:
I is initial amount;
C is change in concentration;
E is for equilibrium concentration;
For the mixture,
N2 3H2 2NH3
I [N2]₀ [H2]₀ 0
C - x -3x +2x
E [N2]₀ - x =8 [H2]₀ - 3x =5 2x =4
With the product, we can find "x":
2x=4
x=2M
With x=2, find the concentrations:
[N2]₀ - x = 8
[N2]₀ = 10M
[H2]₀ - 3x = 5
[H2]₀ = 11M
The initial concentrations of nitrogen gas [N2] is 10.0 M and of hydrogen gas [H2] is 11.0 M.
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction:
2 Al + 3 Cl2 --> 2 AlCl3
Whereas there is a 2:3 mole ratio of aluminum to chlorine; it will be possible for us to calculate the required grams of aluminum by using the equality 22.4 L = 1 mol, the aforementioned mole ratio and the atomic mass of aluminum (27.0 g/mol) to obtain:

Regards!
__ KClO₃ → __ KCl + __ O₂
Left Side:
1 K
1 Cl
3 O
Right Side:
1 K
1 Cl
2 O
Since the least common multiple of 3 and 2 is 6, we need to multiply the compound with 2 oxygen by 3 and the compound with 3 oxygen by 2.
This gives us 2KClO₃ → __ KCl + 3O₂.
However, this equation is still not balanced.
Left Side:
2 K
2 Cl
6 O
Right Side:
1 K
1 Cl
6 O
In order to balance the K and Cl, we need to multiply the KCl compound on the right side by 2.
2KClO₃ → 2KCl + 3O₂
Nuclear fossion hope this helps