Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

Then, it means that the net force acting on the test charge has a magnitude of √2F.