Answer:
8x^3-7x^2-11x+9
Step-by-step explanation:
(8x^3-5x-1)-(7x^2+6x-10)
remove unnesasary ( )
8x^3-5x-1 -(7x^2+6x-10)
the distribute
8x^3-5x-1 -7x^2-6x+10
combine like terms
8x^3-11x+9-7x^2
use the communative property to reorder the equation
8x^3-7x^2-11x+9
Answer: 
Step-by-step explanation:
We know that probability for any event = 
Given : Charlotte has 6 cherry candies, 3 grape candies, and 3 lime candies.
I..e Total pieces of candies she has = 6+3+3= 12
Now , If Charlotte randomly pulls one piece of candy out of the bag, what is the probability that it will be cherry is given by :-

Hence, the probability that it will be cherry is
.
Answer:
around 904.78
Step-by-step explanation:
i got 904.78 but i cant read the answers properly so choose the closest one
Answer:
see below
Step-by-step explanation:
Put -1 where x is in each expression and evaluate it.
__
You will find that the expression is zero when the numerator is zero. And you will find the numerator is zero when it has a factor that is equivalent to ...
(x +1)
Substituting x=-1 into this factor makes it be ...
(-1 +1) = 0
__
Evaluating the first expression, we have ...

This first expression is one you want to "check."
You can see that the reason the expression is zero is that x+1 has a sum of zero. You can look for that same sum in the other expressions. (The tricky one is the one with the factor (x -(-1)). You know, of course, that -(-1) = +1.)
Answer:
Step-by-step explanation:
Vertical Asymptote: x=2Horizontal Asymptote: NoneEquation of the Slant/Oblique Asymptote: y=x 3+23 Explanation:Given:y=f(x)=x2−93x−6Step.1:To find the Vertical Asymptote:a. Factor where possibleb. Cancel common factors, if anyc. Set Denominator = 0We will start following the steps:Consider:y=f(x)=x2−93x−6We will factor where possible:y=f(x)=(x+3)(x−3)3x−6If there are any common factors in the numerator and the denominator, we can cancel them.But, we do not have any.Hence, we will move on.Next, we set the denominator to zero.(3x−6)=0Add 6 to both sides.(3x−6+6)=0+6(3x−6+6)=0+6⇒3x=6⇒x=63=2Hence, our Vertical Asymptote is at x=2Refer to the graph below:enter image source hereStep.2:To find the Horizontal Asymptote:Consider:y=f(x)=x2−93x−6Since the highest degree of the numerator is greater than the highest degree of the denominator,Horizontal Asymptote DOES NOT EXISTStep.3:To find the Slant/Oblique Asymptote:Consider:y=f(x)=x2−93x−6Since, the highest degree of the numerator is one more than the highest degree of the denominator, we do have a Slant/Oblique AsymptoteWe will now perform the Polynomial Long Division usingy=f(x)=x2−93x−6enter image source hereHence, the Result of our Long Polynomial Division isx3+23+(−53x−6)