Answer:
Explanation:
As we know that the ball is projected upwards so that it will reach to maximum height of 16 m
so we have

here we know that

also we have

so we have


Now we need to find the height where its speed becomes half of initial value
so we have

now we have





Answer:
21.3 V, 1.2 A
Explanation:
1.
These resistors are in series, so the net resistance is:
R = R₁ + R₂ + R₃
R = 20 + 30 + 45
R = 95
So the current is:
V = IR
45 = I (95)
I = 9/19
So the voltage drop across R₃ is:
V = IR
V = (9/19) (45)
V ≈ 21.3 V
2.
First, we need to find the equivalent resistance of R₂ and R₃, which are in parallel:
1/R₂₃ = 1/R₂ + 1/R₃
1/R₂₃ = 1/10 + 1/10
R₂₃ = 5
Now we find the overall resistance by adding the resistors in series:
R = R₁ + R₂₃ + R₄
R = 10 + 5 + 10
R = 25
So the current through R₁ is:
V = IR
30 = I (25)
I = 1.2 A
Answer
given,
height of Alpe d'Huez = 1100-m
time = 37.5 min
mass of the rider and his bike = 65 Kg
the metabolic power to ride = 700 W
U = m g y
U = 65 x 9.8 x 1100
U = 700700 J
since efficiency is 25%





b) 

P = 1245.68 W
The equator is warmer than the poles because the equator is closer to the sun. In other words, the sun is overhead the equator, which is a result of the Earth's curvature.
Answer:
9.17 m/s^2
Explanation:
Formula for force is given by
F = m*a
where F is the force in newton
m is the mass of body in KG
and
a is the acceleration of body on m/s^2
_______________________________________________
Given
F = 11,000
mass = 1,200 Kg
we have to find value of acceleration
using
F = m*a
11,000 = 1200*a
=> a = 11,000 /1200 = 9.17
Thus, the acceleration of a car is 9.17 meter per second square