Light will make the object appear “broken” or in an irregular shape.
Refraction is the change in direction of waves.
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
Given:
I₁ = 0.70 kg-m², the moment of inertia with arms and legs in
I₂ = 3.5 kg-m², the moment of inertia with arms and a leg out.
ω₁ = 4.8 rev/s, the angular speed with arms and legs in.
That is,
ω₁ = (4.8 rev/s)*(2π rad/rev) = 30.159 rad/s
Let ω₂ = the angular speed with arms and a leg out.
Because momentum is conserved, therefore
I₂ω₂ = I₁ω₁
ω₂ = (I₁/I₂)ω₁
= (0.7/3.5)*(30.159)
= 6.032 rad/s
ω₂ = (6.032 rad/s)*(1/(2π) rev/rad) = 0.96 rev/s
Answer: 0.96 rev/s
Answer:
Triple, double, single
Explanation:
They are all the same type of elemental bond, therefore the more of the same bond, you can only assume it would get stronger.
Answer:
No.
Explanation:
There is no change in gravitational force based on the sizes remaining the same. If there was a change in gravitational force the orbits of all planets would change.