The calculated magnitude is 6.73 x 10³ V/m.
AMU is described as being one-twelfth the mass of a carbon-12 atom (12C). C makes up more than 98% of the carbon that can be found in nature, making it the most prevalent isotope. The magnitude of the field is the change in potential across a small distance in the indicated direction divided by that distance.
Potential difference = 8.20 kV= 8.20 x 10³ V
radius= 19.4/100=0.194 m
total distance that is circumference of the circle= 2πr =2 x 3.14 x 0.194
= 1.218 m
therefore Magnitude= 8.20 x 10³ / 1.218
=6.73 x 10³ V/m
Learn more about Magnitude here-
brainly.com/question/15681399
#SPJ9
Answer to A spring<span> is </span>stretched<span> to a </span>displacement<span> of </span>3.4 m<span> from </span>equilibrium<span>. </span>Then<span> the </span>spring<span> is</span>released<span> and ... </span>Then<span> the </span>spring<span> is </span>released<span> and </span>allowed<span> to </span>recoil<span> to a </span>displacement<span> of </span>1.9 m<span> from</span>equilibrium<span>. The </span>spring constant<span> is </span>11 N/m<span>. What </span>best describes<span> the </span>work involved<span> as the </span>spring recoils<span>? A)87 J of </span>work<span> is performed ...</span>
Answer:
2,500 feet (760 meters)
Explannation: <em>At about 2,500 feet (760 meters), the skydiver throws out a pilot chute, and it deploys the parachute. Its used to control the fall rate.</em>
The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):
Which can be also re-written as
where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for ,
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:
Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium
Substitute the given values
The temperature of heater is then:
The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.