Answer: work = 1,305kJ
Explanation:
angle= 30°
force= 1,500N
distance= 1,000m
The formula for work is : Work= force x distance, however there is an angle of 30° between the direction of force applied and the direction of motion, therefore force must be decomposed to its value on the horizontal axis which is the direction of motion by using the cosine of the very angle.
W= F×cos(α)×D
W= 1,500×cos (30)×1,000
W= 1,305kJ ( kilojoules)
Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
Answer:
181.48 N
Explanation:
Calculate the area :
Area = pi * r² ;
pi = 3.14 ; r1 = 90cm /100 = 0.9m ; r2 = 10/100 = 0.1m
Area 1, A1 = 3.14 * 0.1² = 0.0314 m²
Area 2, A2 = 3.14 * 0.9² = 2.5434 m²
Force, F = mass * acceleration due to gravity
F2 = 1500 * 9.8 = 14700 N
Force 1 / Area 1 = Force 2 / Area 2
Force 1 = (Force 2 / Area 2), * Area 1
Force 1 = (14700 / 2.5434) * 0.0314
Force = 5779.6650 * 0.0314
= 181.48 N
Answer:
The speed of q₂ is 
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy



Put the value into the formula






Hence, The speed of q₂ is 
<span>It stores energy and delivers it in a short burst.
The whirring sound is produced by the charging of the capacitor. A capacitor is an electrical component which is capable of storing charge. When the capacitor stores charge, it is storing energy. After doing so, the capacitor releases the electrical energy that it had stored as light energy, which is seen as the flash of the camera. It must do so in a burst, because the intensity of the flash is very high and would require a high amount of energy to maintain.
</span>