Answer:
162.78 m/s is the most probable speed of a helium atom.
Explanation:
The most probable speed:

= Boltzmann’s constant =
T = temperature of the gas
m = mass of the gas particle.
Given, m = 
T = 6.4 K
Substituting all the given values :


162.78 m/s is the most probable speed of a helium atom.
Kinetic energy= .5 x m x v^2
KE=.5 x 4.2 x 3.85^2
KE=31.13
Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Answer:
<h3>Newton's 2nd law states acceleration is proportional to the net force acting on an object. The net force is the vector sum of all the forces applied to the object. ... In this case the acceleration (slowing down) of the puck is proportional to the amount of friction.</h3>
Explanation:
<h3>mark as brainliast</h3>