Answer:
6.86 N
Explanation:
Applying,
F = mg............... Equation 1
Where F = Force exerted by gravity on the mass, m = mass, g = acceleration due to gravity
Note: The Force exerted by gravity on the mass is thesame as the weight of the body.
From the question,
Given: m = 700 g = (700/1000) = 0.7 kg
Constant: g = 9.8 m/s²
Substitute these values into equation 1
F = 9.8(0.7)
F = 6.86 N
Answer:
240 ohms
Explanation:
From Ohms law we deduce that V=IR and making R the subject of the formula then R=V/I where R is resistance, I is current and V is coltage across. Substituting 120 V for V and 0.5 A for A then
R=120/0.5=240 Ohms
Alternatively, resistance is equal to voltage squared divided by watts hence 
Answer:
194,400 joules of kinetic energy.
Explanation:
Remember that to calculate the Kinetic energy you need to use the next formula:

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.
Answer:
a) r = 6122 m and b) v = 32.5 m / s
Explanation:
a) The train in the curve is subject to centripetal acceleration
a = v2 / r
Where v is The speed and r the radius of the curve
They indicate that the maximum acceleration of the person is 0.060g,
a = 0.060 g
a = 0.060 9.8
a = 0.588 m /s²
Let's calculate the radius
v = 216 km / h (1000m / 1km) (1 h / 3600 s =
v = 60 m / s
r = v² / a
r = 60² /0.588
r = 6122 m
b) Let's calculate the speed, for a radius curve 1.80 km = 1800 m
v = √a r
v = √( 0.588 1800)
v = 32.5 m / s
Answer:
Left to right and top to bottom
Explanation:
On the periodic table, the properties repeat from left to right and from top to bottom.
Periodic properties have a pattern from the top to the bottom or down a group or family.
Also, across the period from left to right, they also show a repeating pattern.
- Certain properties increase from left to right and decreases from top to bottom. E.g. electronegativity.
- Also, some properties decreases from left to right and increases from top to bottom e.g. atomic radius.