Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.
Answer:
C2H5OH is a formula of ethyl alchol or ethanol.
alkenes are characterisized by carbon-carbon double bond.
burning is an example of exothermic reaction
atomic number of element is x the symbol of its ion is +1 bcz it will lose one electron
if temperature increases then rate of chemical reaction increases
Explanation:
i hope this will help you :)
Answer:
a) Order of a reaction is always a whole number
Explanation:
Order of a reaction is not always whole number. It can be zero, or fractional .
Molality can be expressed by moles of solute over
kilograms of solvent. The question asks the molality of 0.25m NaCl. 0.25m NaCl
is equal to 0.25 moles of NaCl over 1 kg of water.
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)=
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.