The ionization energy is the minimum amount of energy required to remove the most loosely bound electron of an isolated neutral gaseous atom or molecule.The first ionisation energy is the energy required to remove one mole of the most loosely held electrons from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. I hope this helps :3
AgNO3+NaCl yields AgCl+NaNo3 (reduction)
...that's the only one I know
Answer:
The answer to your question is P = 1.357 atm
Explanation:
Data
Volume = 22.4 L
1 mol
temperature = 100°C
a = 0.211 L² atm
b = 0.0171 L/mol
R = 0.082 atmL/mol°K
Convert temperature to °K
Temperature = 100 + 273
= 373°K
Formula

Substitution

Simplify
(P + 0.0094)(22.3829) = 30.586
Solve for P
P + 0.0094 = 
P + 0.0094 = 1.366
P = 1.336 - 0.0094
P = 1.357 atm
Non metal atoms got this from google btw
Answer: 14943.5 J
Explanation:
The quantity of heat energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that,
Q = ?
Mass of water = 55.0g
C = 4.18 J/g°C
Φ = 65.0°C
Then, Q = MCΦ
Q = 55.0g x 4.18 J/g°C x 65.0°C
Q = 14943.5 J
Thus, 14943.5 joules of heat is needed to raise the temperature of water.