They cant occupy the same box in the periodic table because each atom has a certain number of protons which is the atomic number and no two atoms have the same amount of protons.
False. What actually determines the properties of elements are the electrons, or aka valence electrons. They are used to bond, which determines its properties.
Its physical weathering and physical weathering can be sometimes called mechanical weathering it includes the processes which break rocks apart changing their chemical composition.
The particle will accelerate 5m/s every second until it reaches a maximum of whatever your graph/diagram goes to, I'm in physical science and this is somewhat similar to what I am doing now but I'm not sure if that was what your looking for.
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg