Answer:
Please check explanation for answer
Explanation:
Here, we are concerned with stating the advantages and disadvantages of using a 6 tube passes instead of a 2 tube passes of the same diameter:
<u>Advantages</u>
* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface
* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too
Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.
<u>Disadvantages</u>
* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.
* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of manufacturing costs
Answer:
Kawasaki Ninja H2R – top speed: 222 mph. This one is another beast in the form of a bike. ...
MTT Turbine Superbike Y2K – top speed: 227 mph. This bike is one of the most powerful production motorcycles. ...
Suzuki Hayabusa – top speed: 248 mph. 1340cc
Answer:
The power developed by engine is 167.55 KW
Explanation:
Given that

Mean effective pressure = 6.4 bar
Speed = 2000 rpm
We know that power is the work done per second.
So

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.
P=167.55 KW
So the power developed by engine is 167.55 KW
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb