Answer and explanation:
The graphical representation of the electronic eye
The state table showing
the present state
input
Next state and
the output
are shown in the attached file
Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
Answer:
Explanation:
volume of 20.9 N
= 20.9 / 11.5 m³
= 1.8174 m³
In one hour 1.8174 m³ flows
in one second volume flowing = 1.8174 / 60 x 60
= 5 x 10⁻⁴ m³
Rate of volume flow = 5 x 10⁻⁴ m³ / s .
Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>
Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %