Answer:
Engineering Controls. The best engineering controls to prevent heat-related illness is to make the work environment cooler and to reduce manual workload with mechanization. A variety of engineering controls can reduce workers' exposure to heat: Air conditioning, Increased general ventilation
, Cooling fans
, Local exhaust ventilation at points of high heat production or moisture, Reflective shields to redirect radiant heat
, Insulation of hot surfaces Elimination of steam leaks
, Cooled seats or benches for rest breaks
, Use of mechanical equipment to reduce manual work, Misting fans that produce a spray of fine water droplets.
Hope this helped you!
Explanation:
Open system because there is mass (water) flowing through the system of interest (radiator)
Answer:

Explanation:
The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

The velocity of water delivered by the fire hose is:


The maximum height is cleared in the Bernoulli's equation:



Answer:
option e is correct answer
Answer:
Z = 29.938Ω ∠22.04°
I = 2.494A
Explanation:
Impedance Z is defined as the total opposition to the flow of current in an AC circuit. In an R-L-C AC circuit, Impedance is expressed as shown:
Z² = R²+(Xl-Xc)²
Z = √R²+(Xl-Xc)²
R is the resistance = 4Ω
Xl is the inductive reactance = ωL
Xc is the capacitive reactance =
1/ωc
Given C = 12 μF, L = 6 mH and ω = 2000 rad/sec
Xl = 2000×6×10^-3
Xl = 12Ω
Xc = 1/2000×12×10^-6
Xc = 1/24000×10^-6
Xc = 1/0.024
Xc = 41.67Ω
Z = √4²+(12-41.67)²
Z = √16+880.31
Z = √896.31
Z = 29.938Ω (to 3dp)
θ = tan^-1(Xl-Xc)/R
θ = tan^-1(12-41.67)/12
θ = tan^-1(-29.67)/12
θ = tan^-1 -2.47
θ = -67.96°
θ = 90-67.96
θ = 22.04° (to 2dp)
To determine the current, we will use the relationship
V = IZ
I =V/Z
Given V = 12V
I = 29.93/12
I = 2.494A (3dp)