1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
3 years ago
7

Learning the key concepts of each approach is essential to successful management of a project. What type of unpredictability is

described when a team is charged with designing the next generation of electronic car may know they are to build a car that seats four adults comfortably and travels over 200 miles before being charged, but they may not know if the battery exists to power such a vehicle?
Engineering
1 answer:
Levart [38]3 years ago
3 0

Answer:

lemme write it down

Explanation:

hold down okay

You might be interested in
Where are the ar manufacturers not fitting the engine in the high end sport cars
fomenos

Answer:

it depends on the but i would recommend check in the front next to the turbo intake.

8 0
3 years ago
The velocity of a particle which moves along the s-axis is given by = 40 − 3 2/ , ℎ t is in seconds. Calculate the displacement
scoundrel [369]

The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec

<h3>How to find the displacement?</h3>

We are given the velocity equation as;

s' = 40 - 3t²

Thus, the speed equation will be gotten by integration of the velocity equation to get;

s = ∫40 - 3t²

s = 40t - ¹/₂t³

Thus, the displacement between times of t = 2 sec and t = 4 sec is;

∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]

∆S = 210 m

Read more about Displacement at; brainly.com/question/4931057

#SPJ1

8 0
2 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
3 years ago
Plz solve the problem
julsineya [31]
I attached a photo that explains and gives the answer to your questions. Had to add a border because the whole picture didn’t fit.

6 0
4 years ago
An aluminum block weighing 28 kg initially at 140°C is brought into contact with a block of iron weighing 36 kg at 60°C in an in
Anika [276]

Answer:

Equilibrium Temperature is 382.71 K

Total entropy is 0.228 kJ/K

Solution:

As per the question:

Mass of the Aluminium block, M = 28 kg

Initial temperature of aluminium, T_{a} = 140^{\circ}C = 273 + 140 = 413 K

Mass of Iron block, m = 36 kg

Temperature for iron block, T_{i} = 60^{\circ}C = 273 + 60 = 333 K

At 400 k

Specific heat of Aluminium, C_{p} = 0.949\ kJ/kgK

At room temperature

Specific heat of iron, C_{p} = 0.45\ kJ/kgK

Now,

To calculate the final equilibrium temperature:

Amount of heat loss by Aluminium = Amount of heat gain by Iron

MC_{p}\Delta T = mC_{p}\Delta T

28\times 0.949(140 - T_{e}) = 36\times 0.45(T_{e} - 60)

Thus

T_{e} = 109.71^{\circ}C = 273 + 109.71 = 382.71 K

where

T_{e} = Equilibrium temperature

Now,

To calculate the changer in entropy:

\Delta s = \Delta s_{a} + \Delta s_{i}

Now,

For Aluminium:

\Delta s_{a} = MC_{p}ln\frac{T_{e}}{T_{i}}

\Delta s_{a} = 28\times 0.949\times ln\frac{382.71}{413} = - 2.025\ kJ/K

For Iron:

\Delta s_{i} = mC_{i}ln\frac{T_{e}}{T_{i}}

\Delta s_{a} = 36\times 0.45\times ln\frac{382.71}{333} = 2.253\ kJ/K

Thus

\Delta s =-2.025 + 2.253 = 0.228\ kJ/K

6 0
3 years ago
Other questions:
  • A vacuum pump is used to drain a basement of 20 °C water (with a density of 998 kg/m3 ). The vapor pressure of water at this tem
    13·1 answer
  • WHAT IS A TOROID IN HYDRAULUCS?
    11·2 answers
  • Pennfoster Trades Safety test. Would appreciate the help. Thank you in advance. Check the screenshots below for the questions I'
    8·1 answer
  • Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
    14·1 answer
  • Consider a steady-state experiment in which the observed current due to reduction of Ox to R is 85 mA/cm2. What is the concentra
    12·1 answer
  • Which is the required type of fire extinguisher for standard naval vessels
    9·1 answer
  • 10. Power = (Distance * Force) / Time
    7·1 answer
  • How do you identify all sensors, functions, and where we can use them?
    12·1 answer
  • A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5
    7·1 answer
  • You may wonder who the rest goes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!