Answer:
Density is 6.16g/L
Explanation:
<em>... at exactly -15°C and exactly 1atm...</em>
<em />
Using general gas law:
PV = nRT
We can find density (Ratio of mass and volume) in an ideal gas as follows:
P/RT = n/V
<em>To convert moles to grams we need to multiply the moles with Molar Weight, MW:</em>
n*MW = m
n = m/MW
P/RT = m/V*MW
P*MW/RT = m/V
<em>Where P is pressure: 1atm;</em>
<em>MW of chlorine pentafluoride: 130.445g/mol</em>
<em>R is gas constant: 0.082atmL/molK</em>
<em>And T is absolute temperature: -15°C+273.15 = 258.15K</em>
<em />
Replacing:
P*MW/RT = m/V
1atm*130.445g/mol / 0.082atmL/molK*258.15K = m/V
6.16g/L = m/V
<h3>Density of the gas is 6.16g/L</h3>
<em> </em>
Answer:
9.7 x 10⁻⁴
Explanation:
HA ⇄ H⁺ + A⁻
C(eq) 0.0174 10⁻²·³⁹ 10⁻²·³⁹
=0.0041M =0.0041M
Ka = [H⁺][A⁻]/[HA] = (0.0014)²/(0.0174) = 9.7 x 10⁻⁴
Alkali metals have only one electron in their outermost energy levels , so (they can loose one electron to) they form a mono positive ion only . That's why alkali metal do not from dispositive ions .
Hope that helps:)