Malleability described the property of physical deformation under some compressive stress; a malleable material could, for example, be hammered into thin sheets. Malleability is generally a property of metallic elements: The atoms of elemental metals in the solid state are held together by a sea of indistinguishable, delocalized electrons. This also partially accounts for the generally high electrical and thermal conductivity of metals.
In any case, only one of the elements listed here is a metal, and that’s copper. Moreover, the other elements (hydrogen, neon, and nitrogen) are gases under standard conditions, and so their malleability wouldn’t even be a sensible consideration.
The interaction between the two atoms of H in H2 with the lower energy corresponds to a covalent bond between hydrogen's.
When the two atoms of H form a bond, they are overlapping the individual orbitals to form a new one. Every hydrogen has 1 electron which sits in a 1s orbital and then form one molecular orbital. The energy of H2 is lower than individual hydrogens because the electrostatic interaction between them.
Answer:
27.9 g
Explanation:
CsF + XeF₆ → CsXeF₇
First we <u>convert 73.1 g of cesium xenon heptafluoride (CsXeF₇) into moles</u>, using its<em> molar mass</em>:
- Molar mass of CsXeF₇ = 397.193 g/mol
- 73.1 g CsXeF₇ ÷ 397.193 g/mol = 0.184 mol CsXeF₇
As <em>1 mol of cesium fluoride (CsF) produces 1 mol of CsXeF₇</em>, in order to produce 0.184 moles of CsXeF₇ we would need 0.184 moles of CsF.
Now we <u>convert 0.184 moles of CsF to moles</u>, using the <em>molar mass of CsF</em>:
- Molar mass of CsF = 151.9 g/mol
- 0.184 mol * 151.9 g/mol = 27.9 g