Answer:

Explanation:
We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

where
is the distance of the new object from the sun (orbital radius)
is the orbital period of the object
is the orbital radius of the Earth
is the orbital period the Earth
Solving the equation for
, we find
![r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m](https://tex.z-dn.net/?f=r_o%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Br_e%5E3%7D%7BT_e%5E2%7DT_o%5E2%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%281.50%5Ccdot%2010%5E%7B11%7Dm%29%5E3%7D%7B%28365%20d%29%5E2%7D%28180%20d%29%5E2%7D%3D9.4%5Ccdot%2010%5E%7B10%7D%20m)
, density is how compact an object is. Put another way, density is the mass of an object divided by its volume.
A difference between the two forces is the fact that gravitation only attracts, while electrical forces attract when the electrical charges are opposite and repel if the charges are similar. Thus, gravitation is considered a monopole force, while electrostatics is a dipole force. Please mark me as a brainiest!!!
Answer:
995.12 N/C
Explanation:
R = 9 cm = 0.09 m
σ = 9 nC/m^2 = 9 x 10^-9 C/m^2
r = 9.1 cm = 0.091 m
q = σ x 4π R² = 9 x 10^-9 x 4 x 3.14 x 0.09 x 0.09 = 9.156 x 10^-10 C
E = kq / r^2
E = ( 9 x 10^9 x 9.156 x 10^-10) / (0.091 x 0.091)
E = 995.12 N/C