(AB) & (CD)
Most machines are fueled by gasoline and electricity
Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Answer:
3.13 m/s
Explanation:
From the question,
Since the flea spring started from rest,
Ek = W................... Equation 1
Where Ek = Kinetic Energy of the flea spring, W = work done on the flea spring.
But,
Ek = 1/2mv²............ Equation 2
Where m = mass of the flea spring, v = flea's speed when it leaves the ground.
substitute equation 2 into equation 1
1/2mv² = W.................... Equation 3
make v the subject of the equation
v = √(2W/m)................. Equation 4
Given: W = 3.6×10⁻⁴ J, m = 2.3×10⁻⁴ kg
Substitute into equation 4
v = √[2×3.6×10⁻⁴ )/2.3×10⁻⁴]
v = 7.2/2.3
v = 3.13 m/s
Hence the flea's speed when it leaves the ground = 3.13 m/s
Adhesive.
Adhesive is the force of attraction between molecules of different kind. Liquid flows upward the wick because the adhesive force between the wick and the liquid is higher than cohesive forces in the liquid.
When the adhesive force between the wick and the liquid is high we have capillarity taking place. This cause the liquid to move up the wick.
1.add the amount of the diagram which is M+Y then dived the answer you get.