The missing part of the incomplete question is given below:
Which important step of scientific design is Shameka conducting?
repetition
replication
verification of results
using controlled variables
Answer:
Verification of results
Explanation:
The way toward gathering five examples of water from various sources is conveyed to confirm the outcome. By gathering water from five distinct areas of a similar source the analyst can genuinely find out the nature of the water in her region of remain.
On the off chance that after examples are tried it is found the water isn't sound, the outcomes would be acknowledged as it has been appropriately checked and a proper move would be made.
Thus, the correct answer is - verification of results
Answer:
The formula for speed is speed=<u>d</u><u>i</u><u>s</u><u>t</u><u>a</u><u>n</u><u>c</u><u>e</u>
time
Explanation:
to work out what the units are for speed,you need to know the units for distance and time.In this example,distance is in metres(m) and time is in seconds (s) , so the units for speed is metre per second (m/s).
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e