Answer:
Sulfur (Option-C) <span>exhibits chemical behavior similar to that of oxygen.
Explanation:
Sulfur has same chemical properties as that of Oxygen because both of them belongs to same group in the periodic table. Also, the similarity of chemical behaviour among the group members is due to same number of electrons in their valence shells.
For examole, the electronic configuration of Oxygen is,
1s</span>², 2s², 2p⁴
There are six valence electrons in the valence shell (i.e. 2) of Oxygen.
Now for Sulfur,
1s², 2s², 2p⁶, 3s², 3p⁴
There are six valence electrons in the valence shell (i.e. 3) of Sulfur.
Therefore, both elements tends to gain 2 electrons in a reaction and form O⁻² and S⁻² respectively.
The array will be created with the elements equal to null.
Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
Answer: both compounds have ionic bond between metal and non-metal
Explanation: both Sr and Mg are earth alkaline metals and form ions Mg^2+
And Sr^2+. Br forms ion Br^- and S ion is S^2+.
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .