1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
3 years ago
8

Water flows at a uniform velocity of 3 m/s into a nozzle that reduces the diameter from 10 cm to 2 cm. Calculate the water’s vel

ocity leaving the nozzle and the flow rate.

Engineering
1 answer:
katrin2010 [14]3 years ago
4 0

Answer:

See the pictures attached

Explanation:

You might be interested in
A turbine operates at steady state, and experiences a heat loss. 1.1 kg/s of water flows through the system. The inlet is mainta
strojnjashka [21]

Answer:

\dot W_{out} = 399.47\,kW

Explanation:

The turbine is modelled after the First Law of Thermodynamics:

-\dot Q_{out} -\dot W_{out} + \dot m\cdot (h_{in}-h_{out}) = 0

The work done by the turbine is:

\dot W_{out} = \dot m \cdot (h_{in}-h_{out})-\dot Q_{out}

The properties of the water are obtained from property tables:

Inlet (Superheated Steam)

P = 10\,MPa

T = 520\,^{\textdegree}C

h = 3425.9\,\frac{kJ}{kg}

Outlet (Superheated Steam)

P = 1\,MPa

T = 280\,^{\textdegree}C

h = 3008.2\,\frac{kJ}{kg}

The work output is:

\dot W_{out} = \left(1.1\,\frac{kg}{s}\right)\cdot \left(3425.9\,\frac{kJ}{kg} -3008.2\,\frac{kJ}{kg}\right) - 60\,kW

\dot W_{out} = 399.47\,kW

5 0
3 years ago
A spring-loaded piston-cylinder contains 1 kg of carbon dioxide. This system is heated from 104 kPa and 25 °C to 1,068 kPa and 3
labwork [276]

Answer:

Q = -68.859 kJ

Explanation:

given details

mass co_2 = 1 kg

initial pressure P_1 = 104 kPa

Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K

final pressure P_2 = 1068 kPa

Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K

we know that

molecular mass of co_2 = 44

R = 8.314/44 = 0.189 kJ/kg K

c_v = 0.657 kJ/kgK

from ideal gas equation

PV =mRT

V_1 = \frac{m RT_1}{P_1}

       =\frac{1*0.189*298}{104}

V_1 = 0.5415 m3

V_2 = \frac{m RT_2}{P_2}

     =\frac{1*0.189*584}{1068}

V_1 = 0.1033 m3

WORK DONE

W =P_{avg}*{V_2-V_1}

w = 586*(0.1033 -0.514)

W =256.76 kJ

INTERNAL ENERGY IS

\Delta U  = m *c_v*{V_2-V_1}

\Delta U  = 1*0.657*(584-298)

\Delta U  =187.902 kJ

HEAT TRANSFER

Q = \Delta U  +W

   = 187.902 +(-256.46)

Q = -68.859 kJ

7 0
3 years ago
Calculate the volume of a hydraulic accumulator capable of delivering 5 liters of oil between 180 and 80 bar, using as a preload
Vinil7 [7]

Answer:

1) V_o = 10 liters

2) V_o = 12.26 liters

Explanation:

For isothermal process n =1

V_o =\frac{\Delta V}{(\frac{p_o}{p_1})^{1/n} -(\frac{p_o}{p_2})^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}

V_o = 10 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.03

actual \ volume = c1\times 10 = 10.3 liters

b) for adiabatic process

n =1.4

volume of hydraulic accumulator is given as

V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}

V_o = 12.26 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.15

actual \volume = c1\times 10 = 11.5 liters

8 0
3 years ago
Seawater containing 3.50 wt% salt passes through a series of 11 evaporators. Roughly equal quantities of water are vaporized in
statuscvo [17]

Answer: the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr

Explanation:

F, W and B are the fresh feed, brine and total water obtained

w = 2 x 10^4 L/h

we know that

F = W + B

we substitute

F = 2 x 10^4 + B

F = 20000 + B .................EQUA 1

solute

0.035F = 0.05B

B = 0.035F/0.05

B = 0.7F

now we substitute value of B in equation 1

F = 20000 + 0.7F

0.3F = 20000

F = 20000/0.3

F = 66666.67 kg/hr

B = 0.7F

B = 0.7 * F

B = 0.7 * 66666.67

B = 46,666.669 kg/hr

the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr

8 0
4 years ago
Technician A says that a defective crankshaft position sensor can cause a no spark condition technician B says that a faulty ign
Aliun [14]
Both tech distributor ignition
5 0
3 years ago
Other questions:
  • 3) What kind of bridges direct their load along it's curve and into the
    12·1 answer
  • The purpose of the __________ algorithm is to enable two users to exchange a secret key securely that can then be used for subse
    8·1 answer
  • If you are setting up a race car. What is the cross weight? Does it matter?
    5·1 answer
  • Some General Motors flex fuel vehicles do not use a fuel sensor to measure the percentage of ethanol in the fuel. These vehicles
    5·1 answer
  • Convert.46 to a percentage
    7·1 answer
  • The ruler game, HELPPPP PLS
    11·2 answers
  • 2. The unthreaded part of a bolt or screw is called the
    7·2 answers
  • It is acceptable to mix used absorbents.
    15·1 answer
  • Derive the expression ε=ln(1+e), where ε is the true strain and e is the engineering strain. Note that this expression is not va
    14·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!