1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
3 years ago
7

Nitrogen gas is compressed at steady state from a pressure of 14.2 psi and a temperature 60o F to a pressure of 120 psi and a te

mperature of 500o F. The gas enters a compressor with a volumetric flow rate of 1200 ft3 /min. The magnitude of the heat transfer rate from the compressor to its surroundings is 5% of the compressor power input. Using the ideal gas model (with variable specific heats) and neglecting kinetic and potential energy effects, determine (a) The compressor power input (in horsepower). (b) The volumetric flow rate at the exit (in ft3 /min).
Engineering
1 answer:
brilliants [131]3 years ago
5 0

Answer:

a) 229.4281 hp.

b) 262.15 ft3/min.

Explanation:

Given data:

P1 = 14.2 psi

T1 = 60°F = 520° R

P2 = 120 psi

T2 = 500°F = 960° R

volumetric flow rate ( Av1 ) = 1200 ft^3 /min = 20 ft^3 / sec

attached below is the detailed solution

You might be interested in
2.11 Consider a 400 mm × 400 mm window in an aircraft. For a temperature difference of 90°C from the inner to the outer surface
alexandr402 [8]

Answer:

The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.

The cost associated with the heat loss through the windows for an 8-hour flight is:

For aerogel windows: $17.472 (most efficient)

For polycarbonate windows: $262.08

For soda-lime glass windows: $1,238.016 (least efficient)

Explanation:

To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

\frac{dQ}{dt}=\dot Q =-kS\nabla \vec{T}

In this case:

\dot Q =k\frac{S}{L} \Delta T

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).

To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).

To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Cost=C_{hc}\cdot \dot Q \cdot t \cdot n=1\frac{\$}{Kwh} \cdot \dot Q \cdot 8h \cdot 130

6 0
3 years ago
A pump is used to deliver water from a lake to an elevated storage tank. The pipe network consists of 1,800 ft (equivalent lengt
Nataly_w [17]

Answer:

h_f = 15 ft, so option A is correct

Explanation:

The formula for head loss is given by;

h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))

Where;

h_f is head loss due to friction in ft

L is length of pipe in ft

Q is flow rate of water in gpm

C is hazen Williams constant

D is diameter of pipe in inches

We are given;

L = 1,800 ft

Q = 600 gpm

C = 120

D = 8 inches

So, plugging in these values into the equation, we have;

h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))

h_f = 14.896 ft.

So, h_f is approximately 15 ft

7 0
3 years ago
Hello, I have a question, I would be glad if you can help.
Anastasy [175]

Answer:

  infinite

Explanation:

The tangent of the angle the arm makes with the vertical will be the ratio of the centripetal acceleration to the acceleration due to gravity on the center of mass of the arm. The angle can only be 90° (fully-open arms) if that ratio is infinite.

The speed must be infinite for the arms to be fully open.

3 0
2 years ago
9. Calculate the total resistance and current in a parallel cir-
Taya2010 [7]

Answer:

  d. 2.3 ohms (5.3 amperes)

Explanation:

The calculator's 1/x key makes it convenient to calculate parallel resistance.

  Req = 1/(1/4 +1/8 +1/16) = 1/(7/16) = 16/7 ≈ 2.3 ohms

This corresponds to answer choice D.

__

<em>Additional comment</em>

This problem statement does not tell the applied voltage. The answer choices suggest that it is 12 V. If so, the current is 12/(16/7) = 21/4 = 5.25 amperes.

5 0
3 years ago
In a website browser address bar, what does “www” stand for?
Ludmilka [50]

Answer:

www stands for world wide web

Explanation:

It will really help you thank you.

3 0
3 years ago
Other questions:
  • Please describe a real situation in which you had to troubleshoot and fix the failure of a piece equipment/machine?
    5·1 answer
  • A steady‐flow gas furnace supplies hot air at a rate of 850 cfm and conditions of 120F and 1.00 atm. The air splits into two bra
    14·1 answer
  • An R-134a refrigeration system is operating with an evaporator pressure of 200 kPa. The refrigerant is 10% in vapor phase at the
    15·1 answer
  • A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200oC, 1 bar. During an interval of 10 minu
    8·1 answer
  • Where you live might affect how often you change your cabin air filter.<br> True<br> False
    8·1 answer
  • ... is an actual sequence of interactions (i.e., an instance) describing one specific situation; a ... is a general sequence of
    9·1 answer
  • W<br>n só<br>i<br>Eo<br>E<br>find the transfer function​
    9·1 answer
  • Test if a number grade is an A (greater than or equal to 90). If so, print "Great!". Hint: Grades may be decimals. Sample Run En
    15·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • 10) A pressure sensor consisting of a diaphragm with strain gauges bonded to its surface has the following information in its sp
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!