The first one. The E and B chatacteristic are perpendicular to eachother. The direction of the wave can be found by the right hand rule.
Answer:
16.2 s
Explanation:
Given:
Δx = 525 m
v₀ = 0 m/s
a = 4.00 m/s²
Find: t
Δx = v₀ t + ½ at²
525 m = (0 m/s) t + ½ (4.00 m/s²) t²
t = 16.2 s
The momentum would increase assuming the velocity stays the same. P=Mv
Mass (m)=55kg
acceleration (a)=9.81 m/s^2, this is the acceleration due to gravity.
initial velocity=0m/s. The skydiver doesn’t start with any speed because she is on the plane or helicopter.
final velocity=16m/s This is the velocity (speed) the skydiver reaches
The equation we use is KE=.5mv^2
Kinetic energy=.5 mass x velocity^2
KE=.5(55kg)(16m/s)^2
KE=.5(55kg)(256m/s)
KE=.5(14080J)
J=Joules
KE=7040J
Kinetic energy is 7040 Joules (J)
Hope this helps
To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

Here,
I = Current
L = Length
B = Magnetic Field
= Angle between Force and Magnetic Field
But 

Rearranging to find the Magnetic Field,

Here the force per unit length,

Replacing with our values,


Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T