Answer:
electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Explanation:
Explanation: In electron sea model, the valence electrons in metals are delocalized instead of orbiting around the nucleus. ... These electrons are free to move within the metal atoms. Thus, we can conclude that the electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Answer:
The addition of sulfate ions shifts equilibrium to the left.
Explanation:
Hello!
In this case, according to the following ionization of strontium sulfate:

It is evidenced that when sodium sulfate is added, sulfate,
is actually added in to the solution, which causes the equilibrium to shift leftwards according to the Le Ch athelier's principle. Thus, the answer in this case would be:
The addition of sulfate ions shifts equilibrium to the left.
Best regards!
Radioactive material undergoes 1st order decay kinetics.
For 1st order decay, half life = 0.693/k
where k = rate constant
k = 0.693/half life = 0.693/8.02 = 0.0864 day-1
Now, for 1st order reaction,
k =

Given: t = 6.01d, initial conc. = 5mg
∴0.0864 =

∴ final conc. = 2.975 mg
The density of ice is less than the density of water (liquid). We generally observe that the density of a solid substance is more than its liquid form as volume of a solid is generally less than the liquid, However in case of water this is not true.
The volume of ice is less than that of liquid water due to an open cage like structure in ice which gives its a wide structure. This cage like structure is due to presence of hydrogen bond (more extensive) in ice.
The maximum density of water is observed at 4 degree celsius