Answer:
Standardisation is used to determine the concentration of a volumetric solution in order to achieve accurate and reliable titration results
Ignore my writing answer is in pictute
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
From n=1 to n=2
Explanation:
Electrons in n=1 are strongly attracted to the nucleus and therefore will require great force to overcome the electrostatic force of attraction to displace them from the energy level to another.
The electrostatic force reduces as you progress to the outer energy levels.
Baking soda is a fine powder because when you touch it the baking soda is very soft