Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.