1. At constant tempaerature and pressure, 3 tablets produce 600cm^3 of gas
Thus calculating for 1 tablet that produces 600 / 3 = 200 cm^3
So now two tablets produce 200 x 2 = 400 cm^3
2. We have the equation PV = nRT, n being the number of moles
Pressure P = 1,000 kPa
Volume V = 3 L
R = 8.31 L kPa/mol-K
Temperature T = 298 K
n = PV / RT = (1000 x 3) / (8.31 x 298) = 3000 / 2476.38 = 1.21 moles
Number of moles = 1.21 moles.
The water from the lake must first evaporate from the liquid state to the gaseous state and then condense in the air to form vapors.
The water molecules absorb energy while evaporating and release it when condensing. Their motion gets faster when they are evaporating and slows back down upon condensation.
Density of boat =
=
= 0.88 g / cm³
Since the density of water is greater than the density of the boat ( 1 > 0.88) then that means,
the boat will NOT sink.B.
Answer:
D. [NO₂]²/[N₂O₄]
Explanation:
The equilibrium constant expression for a reaction is products over reactants. Since NO₂ has a coefficient of 2, it will become an exponent.
So, it would be:
[NO₂]²/[N₂O₄]
Hope that helps.
∆H ° rxn =-2855.56 kJ
<h3>Further explanation</h3>
Given
ΔHf CO₂ = -393.5 kJ/mol
ΔHf H₂O = -241.82 kJ/mol
ΔHf C₂H₆ = - 84.68 kJ/mol
Reaction
2C2H6(g) + 7O2(g) -> 4CO2(g) + 6H2O(g)
Required
ΔHrxn=
Solution
<em>∆H ° rxn = ∑n ∆Hf ° (product) - ∑n ∆Hf ° (reactants) </em>
∆H ° rxn = (4.-393.5+6.-241.82)-(2.-84.68)
∆H ° rxn = (-1574-1450.92)-(-169.36)
∆H ° rxn =-3024.92+169.36
∆H ° rxn =-2855.56 kJ