60 RPM equals one hertz (i.e., one revolution per second, or a period of one second). The SI unit for period is the second.
<span>So we want to know what will happen when the fast moving car that is making loud noise that is initially approaching the person, passes the person and starts to move away. So Doppler effect is a phenomenon where when the source of a sound is approaching a person, the person hears the sound as higher than if the source was standing still with respect to the person because the wavelength is getting shorter, and as the source is moving avay from the person the sound is getting deeper because the wavelength is getting longer. So the correct answer is A. </span>
Answer:
magnitude of force on charge 2Q = 
Direction of force on charge = 61 ⁰
Explanation:
The magnitude on the force on the charge can be evaluated by finding the net force acting on the charge 2Q i.e x-component of the net force and the y-component of the net force
║F║ =
= after considering the forces coming from Q, 3Q and 4Q AND APPLYING COULOMBS LAW
magnitude of force acting on 2Q = 
The direction of the force on charge 2Q is calculated as
tan ∅ =
= 1.8284
therefore ∅ =
1.8284
= 61⁰
Complete part of Question: What is Jane's (and the vine's) angular speed just before she grabs Tarzan
Answer:
Jane's (and the vine's) angular speed just before she grabs Tarzan, w = 1.267 rad/s
Explanation:
According to the law of energy conservation:
Total change in kinetic energy = Total change in potential energy
Mass of Jane = 60 kg
Mass of the vine = 32 kg
Mass of Tarzan = 72 kg
Height of Tarzan = 5.50 m
Length of the vine = 8.50 m
Jane's change in gravitational potential energy,

Vine's gravitational potential energy,

Vine's Kinetic energy :

Jane's Kinetic energy:


3234 + 862.4 = 2167.5w² + 385.33w²
4096.4 = 2552.83w²
w² = 4096.4/2552.83
w² = 1.605
w = √1.605
w = 1.267 rad/s