Answer:
D
Explanation:
Because we have two reactants and product
The final velocity of the train at the end of the given distance is 7.81 m/s.
The given parameters;
- initial velocity of the train, u = 6.4 m/s
- acceleration of the train, a = 0.1 m/s²
- distance traveled, s = 100 m
The final velocity of the train at the end of the given distance is calculated using the following kinematic equation;
v² = u² + 2as
v² = (6.4)² + (2 x 0.1 x 100)
v² = 60.96
v = √60.96
v = 7.81 m/s
Thus, the final velocity of the train at the end of the given distance is 7.81 m/s.
Learn more here:brainly.com/question/21180604
Answer:
a) 0.15 μC b) 9.4*10¹¹ electrons.
Explanation:
As the total charge must be conserved, the total charge on the spheres, after being brought to contact each other, and then separated, must be equal to the total charge present in the spheres prior to be put in contact:
Q = +8.2μC +9.0 μC +(-7.8 μC) + (-8.8 μC) = +0.6 μC
As the spheres are assumed perfect conductors, as they are identical, once in contact each other, the excess charge spreads evenly on each sphere, so the final charge, on each of them, is just the fourth part of the total charge:
Qs = Qt/4 = 0.6 μC / 4 = 0.15 μC.
b) As the charge has a positive sign, this means that each sphere has a defect of electrons.
In order to know how many electrons are absent in each sphere, we can divide the total charge by the charge of one electron, which is the elementary charge e, as follows:

Answer:
1 - third law
2 - second law
3 - first law
4 - third law
5 - second law
6 - first law
Explanation:
First law
In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
Second law
In an inertial frame of reference, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration, a of the object
F = ma.
Third law
When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.